

Neurocrine Biosciences 2023 Analyst Day

December 5, 2023

Dr. Kevin Gorman CHIEF EXECUTIVE OFFICER

Neurocrine Biosciences Attendees

Darin M. Lippoldt

Chief Legal Officer

Kevin Gorman, Ph.D.

Chief Executive Officer

Julie Cooke Chief Human Resources Officer

Matt Abernethy Chief Financial Officer

Ingrid Delaet, Ph.D. Chief Regulatory Officer

Eric Benevich Chief Commercial Officer

Kyle Gano, Ph.D. Chief Business Development & Strategy Officer

Jude Onyia, Ph.D. Chief Scientific Officer

David Boyer Chief Corporate Affairs Officer

Dimitri E. Grigoriadis, Ph.D.

Chief Research Officer

Eiry Roberts, M.D. Chief Medical Officer

Agenda

TIME (EST PM)	Торіс	Speaker(s)	
1:00 – 2:00	Welcome / CEO Opening Remarks	Kevin Gorman	
(R&D Focus)	R&D Vision and Strategy	Jude Onyia	
	R&D Q&A Session	Jude Onyia, Eiry Roberts, Kyle Gano, Jerold Chun, Grace Liang	
2:00 – 3:15	A Brief History of CRF	Kevin Gorman / Dimitri Grigoriadis	
(CAH Focus)	Congenital Adrenal Hyperplasia (CAH) Overview	Eiry Roberts	
(,	CAH Panel	Moderated by Jean Chan and Bob Farber with Guest Panelist	
	Crinecerfont Phase 3 Results	Eiry Roberts	
	CAH / Crinecerfont Q&A Session	Guest Panelists, Eiry Roberts, Jean Chan, Bob Farber	
3:15 – 3:45	CEO Closing Remarks / Open Q&A Session	Kevin Gorman / All	
3:45 – 4:45	Webcast Concludes / Breakout Sessions Begin		
(Breakouts)	- Track A: R&D Strategy and Vision	Jude Onyia, Kyle Gano, Jerold Chun, Grace Liang	
	- Track B: CAH / Crinecerfont	KOLs, Jean Chan, Bob Farber, Matt Abernethy, Eric Benevich	
	- Track C: Psychiatry / Muscarinic Compounds	Eiry Roberts, Jaz Singh, Samir Siddhanti	
4:45 – 5:00	Post-Breakout Networking / Analyst Day Concludes	All	

Forward-Looking Statements

In addition to historical facts, this presentation contains forward-looking statements that involve a number of risks and uncertainties. These statements include, but are not limited to, statements regarding the potential benefits to be derived from certain of our product candidates and our future development plans. Among the factors that could cause actual results to differ materially from those indicated in the forward-looking statements include: our future financial and operating performance; risks and uncertainties associated with the commercialization of our products; the risk that our products and/or product candidates will not be found to be safe and/or effective or may not prove to be beneficial to patients; that development activities for our products and/or product candidates may not be completed on time or at all; risks that clinical development activities may be delayed for regulatory or other reasons, may not be successful or replicate previous and/or interim clinical trial results, or may not be predictive of real-world results or of results in subsequent clinical trials; risks that regulatory submissions for our products and/or product candidates may not occur or be submitted in a timely manner; risks that our products and/or product candidates may not obtain regulatory approvals; or that the U.S. Food and Drug Administration or regulatory authorities outside the U.S. may make adverse decisions regarding our products and/or product candidates; risks and uncertainties relating to competitive products and technological changes that may limit demand for our products; risks associated with our dependence on third parties for development and manufacturing activities related to our products and our product candidates, and our ability to manage these third parties; and other risks described in the Company's periodic reports filed with the Securities and Exchange Commission, including without limitation the Company's guarterly report on Form 10-Q for the guarter ended September 30, 2023. Neurocrine Biosciences disclaims any obligation to update the statements contained in this presentation after the date hereof.

Where Are We Today?

- Discovered and Developed Three Novel FDA-Approved Programs
- **Deep Expertise** in Neuroscience Drug Development
- Fully-Integrated Organization with Both R&D and Commercial Capabilities
- Growing Blockbuster Commercial Product in INGREZZA with Strong IP Protection
- Future Blockbuster Opportunity with Crinecerfont
- Largest Portfolio of Muscarinic Compounds in Clinical Development
- Strong Financial Profile That Can Support Significant R&D Investment

Neurocrine Biosciences Has Unparalleled Scale and Focus

Building and Maximizing the Pipeline

of Programs by Stage

Phase 3 Phase 1 Phase 2 8 1 4

			Phase 1	Phase 2	Phase 3	NDA	Milestone
Neurology							
valbenazine*	Sprinkle Formulation	VMAT2 Inhibitor				•	PDUFA: 4/30/2024
valbenazine*	Dyskinetic Cerebral Palsy	VMAT2 Inhibitor					Phase 3 Ongoing
NBI-827104 ²	EE-CSWS	Ca _v 3.1, 3.2, 3.3		•			Phase 2 Ongoing
NBI-921352 ³	SCN8A-DEE	Na _v 1.6					Phase 2 Ongoing
NBI-1076986	Movement Disorders	M4 Antagonist					Submitting CTA
Neuroendocrinol	logy						
crinecerfont ⁴	CAH: Adults	CRF-R1					NDA: 2024
crinecerfont ⁴	CAH: Pediatrics	CRF-R1	-		•		NDA: 2024
Efmody	Adrenal Insufficiency	GC Receptor]				Phase 2 Data: 1H '24
Efmody	САН	GC Receptor					Phase 2 Data: 1H '24

Neuropsychiatry

valbenazine*	ATS	VMAT2 Inhibitor	Phase 3 Ongoing
NBI-1065845 ⁵	Inadequate Response-MDD	AMPA	Phase 2 Data: 1H '24
luvadaxistat ⁵	CIAS	DAAO	Phase 2 Data: 2H '24
NBI-11175681	Schizophrenia	M4 Agonist	Phase 2 Data: 2H '24
NBI-1070770 ⁵	MDD	NMDA NR2B NAM	Phase 2 Initiating
NBI-1117570 ¹	CNS Indications	M1/M4-Dual	Phase 1 Ongoing
NBI-1117569 ¹	CNS Indications	M4-Preferring	Phase 1 Ongoing
NBI-1117567 ^{1†}	CNS Indications	M1-Preferring	Phase 1 Initiating
NBI-1065890	CNS Indications	VMAT2 Inhibitor	Submitting CTA

* Mitsubishi Tanabe Pharma Corporation (MTPC) has commercialization rights in Japan and other select Asian markets † Sosei Heptares has retained rights in Japan; Neurocrine Biosciences may opt-in to a 50:50 cost and revenue share upon certain development events

In-licensed program = (1) Sosei Heptares (2) Idorsia Ltd (3) Xenon Pharmaceuticals Inc (4) Sanofi (5) Takeda Pharmaceutical Company Ltd Neurocrine Biosciences has global rights unless otherwise noted.

5

Dr. Jude Onyia CHIEF SCIENTIFIC OFFICER

R&D Vision

Top 5 Global Leadership in Neuroscience

Five Year Plan

Long-Term Steady State

Produce 20 Development Candidates*

- "20 in 5" Goal Will be a Product of Internal Research and External Innovation
- Will Span Range of Modalities (Small Molecules, Peptides, Antibodies, Gene Therapy)
- Increased Internal R&D Breadth and Depth Will Enhance Ability and Quality of Diligence Rigor to Assess External Opportunities

Produce One Commercial Product Every Two Years

 Requires Several "Shots on Goal" Per Year and Significant Investment, Leveraging Our Strong Financial Profile

Build Breadth and Depth

Strengthen Therapeutic Area Expertise

Strengthen Existing Modality + Build New Modalities

Shift Focus to Higher Probability "Best & Next-In Class" Targets

Deploy External Innovation to Accelerate R&D

Goal: Deliver A Diversified Portfolio Across Therapeutic Areas and Modalities

Committed to Improving Our Probability of Success

Focus Areas to Improve Probability of Success

Guiding Principles

Right Targets

Right Drugs

Right Patients

Deep Understanding

of Disease and Unmet Need

Clinical and / or Genetic

Validation

Translationally Relevant

Endpoints

Leverage

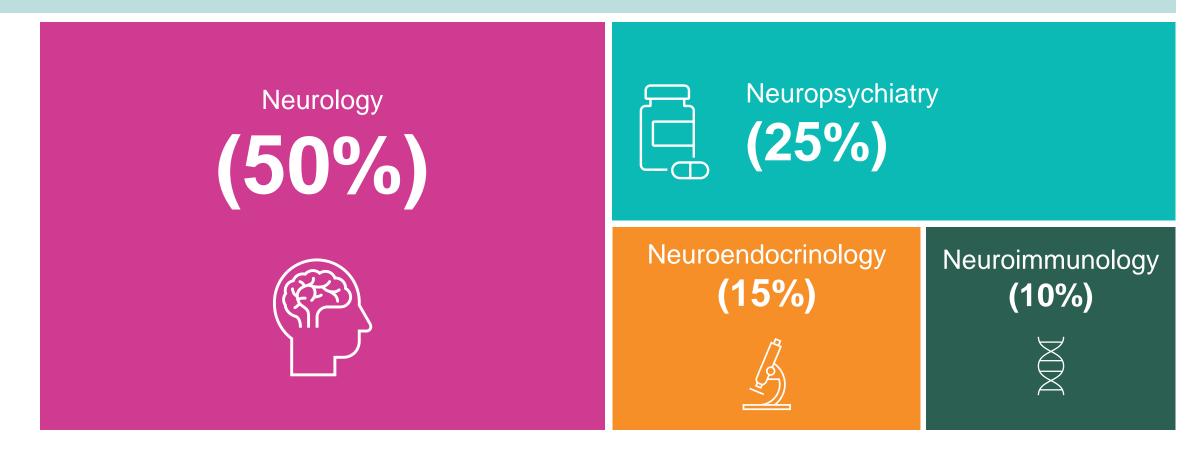
Shared Pathophysiological Mechanisms

Modality

Agnostic Approach

Explore Multi-Target

Drug Combinations



Therapeutic Areas of Focus

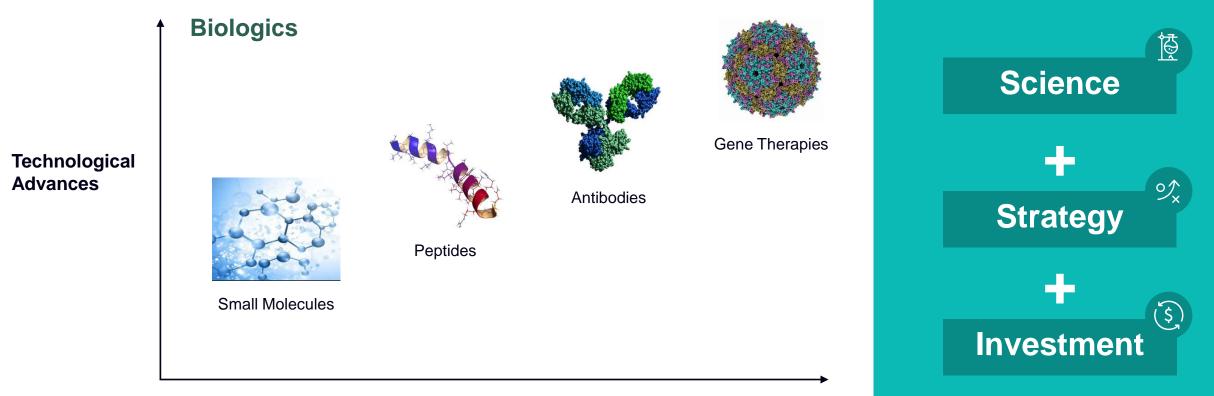
Therapeutic Areas of Focus

Prioritizing Heavier Investment in Neurology vs. Neuropsychiatry Today

What Do We Want To Add Over Next Five Years?

Neurology	Neuropsychiatry	Neuroendocrinology
Movement Disorders	Schizophrenia	Congenital Adrenal Hyperplasia
Epilepsy	Depression	Metabolic Disease
Neuromuscular	Bipolar Mania	Rare Endocrinology
Neurodegenerative/ Neurodevelopmental	Alzheimer's Disease Psychosis	

Neuroimmunology Tech Platform Immune-mediated Neuronal Disorders and Neurodegenerative Diseases

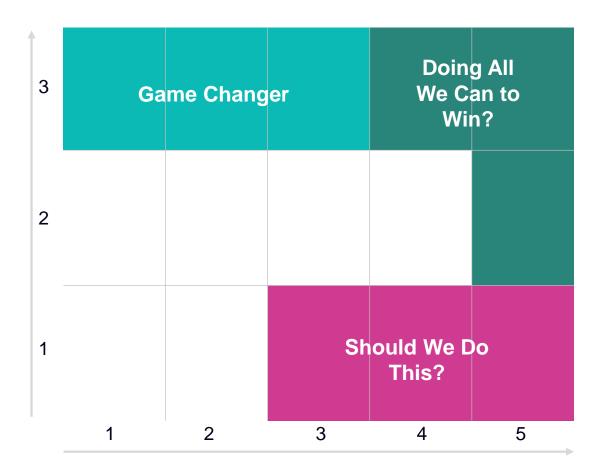


Modalities

Modalities Expand the Range of Therapeutic Innovation

Target Specificity & Molecular Weight

New Opportunities Via Modalities Across Therapeutic Areas


Tech Platforms

	Small Molecules	Peptides	Antibodies	Gene Therapy
Neuropsychiatry	\checkmark	?	?	
Neurology	\checkmark	\checkmark	\checkmark	\checkmark
Neuroendocrinology	\checkmark	\checkmark	\checkmark	\checkmark
Neuroimmunology	\checkmark	\checkmark	\checkmark	\checkmark

Where Do We Point The Engine?

Opportunity [Unmet Need]

Focus on High Confidence and High Opportunity Targets

Confidence / Ability to Deliver [Biology/Chemistry/Clinical]

Molecule Design & Engineering

Developing a Competitive Advantage at Neurocrine Biosciences

Design Principles — Patient Outcome Centric

Maximize Efficacy

Maximize Safety

Ideal Drug-Like Profile

Convenient Delivery

EFFICACY1) Better pharmacology2) Added pharmacology3) Better time action	 SAFETY 1) Improve safety 2) Improve specificity 3) Reduce immunogenicity
 DRUG-LIKE PROFILE 1) Improve stability 2) Improve expression 3) Improve solubility 	 CONVENIENT DELIVERY 1) Better formulation 2) Device compatibility 3) Compliance & outcome

Strategic Line of Sight from Concept to Patient

Leveraging External Innovation as a Multiplier

Leveraging External Innovation for Over 30 Years

COMMERCIAL PRODUCT

Increase Topline Growth, Accelerate Presence in Disease States Supported by Pipeline Programs

CLINICAL-STAGE PROGRAMS Focus on Programs with Proof-of-Concept,

Expand and / our Maintain Pipeline in Core TAs

ENABLING TECHNOLOGY

Add to Early-Stage Pipeline Through Externalization – New Modalities, AI-Driven Tools, Assay & Screening Methodologies, etc.

We Remain Agnostic To Deal Structure

OPTION-TO-LICENSE FOR RISK MANAGEMENT

- Relevant for Early-Stage Deal
- Limits Neurocrine Resources Until Program Achieves Key Milestone (e.g. IND Acceptance)

ROYALTY LICENSE TO PROFIT SHARE

Utilized Across All Areas of Interest

ACQUISITION, WITH FOCUS ON:

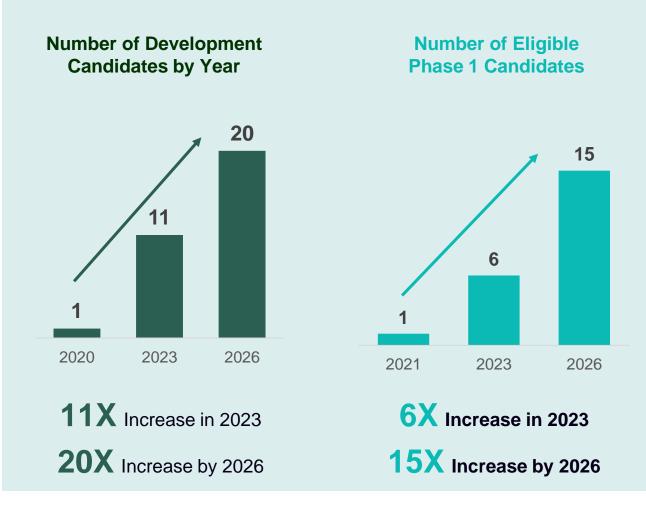
- Pre-Commercial to Commercial Product
- Mid-to-Late-Stage Program
- Platform Technology

Sourcing Assets and Technology is a Competitive Advantage

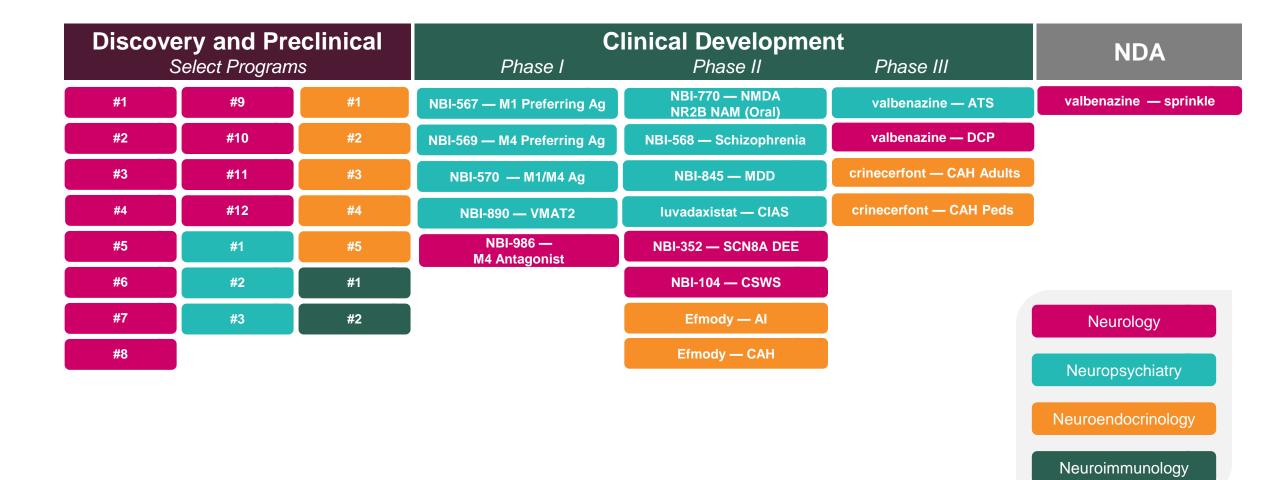
We Have a Unique Ability to Align Partner Needs and Interests with Our Own

Internal R&D Will Meet External Innovation to Build and Sustain Our Pipeline

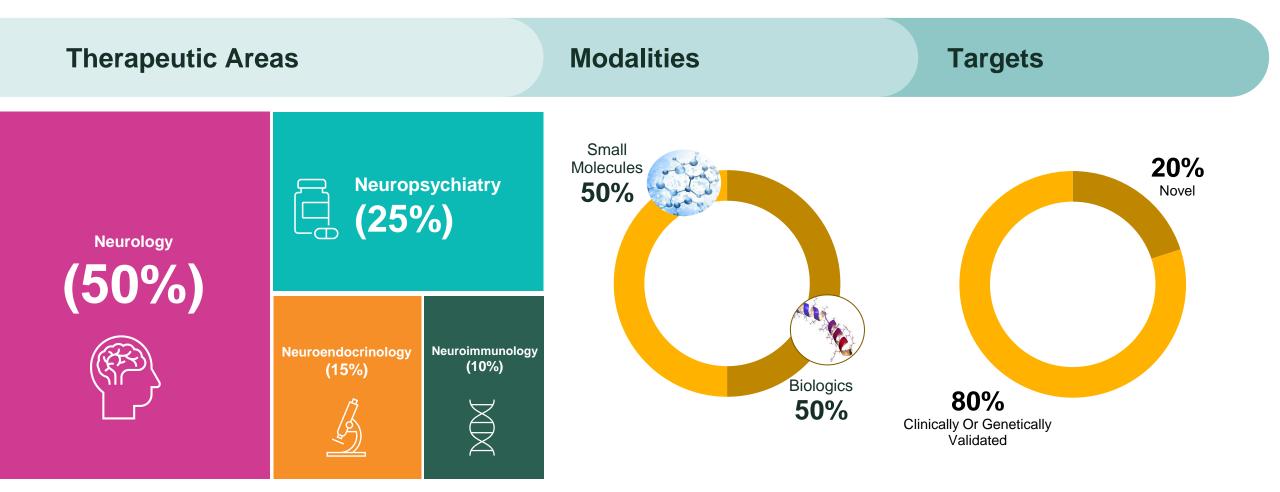
Treatment	Company	Targets/Modalities	Examples
		GPCRs	Commercial: ORILISSA [®] , ORIAHNN [®] (GnRH) Phase 3: Crinecerfont (CRF) Phase 2: NBI-'568 (Muscarinic M4) Phase 1: NBI-'570 (Muscarinic M1/M4 Dual)
Symptomatic Treatments To	Therapeutics Takeda	Enzymes, Transporters	Phase 2: Luvadaxistat (DAAO)
Precision Medicine	XENON Idorsia	Ion Channels	Phase 2: NBI-'770 (NMDA NR2B NAM), NBI-'845 (AMPA), NBI-'104 (Ca _v 3.1-3.3), NBI-'352 (Na _v 1.6)
	Diurnal	Nuclear Receptors	Commercial: Alkindi [®] , Efmody [®]
Disease Modification To Curative Therapies		Gene Therapies	Preclinical: GBA1-Parkinson's / Gaucher, Friedreich's Ataxia, Five Undisclosed Targets
New Modalities	ABLEXIS BIOCYTOGEN charles river OmniAb	Peptides, Antibodies, Proteins, Delivery- Formulation Technology	Preclinical: >10 targets including CRF



Emerging Pipeline: Building Blocks for Rapid / Sustainable Portfolio Growth


Early R&D Trends Are Positive With Increased Number of Assets and Faster Timeframe Leading to Robust Early Clinical Pipeline

- 10 New Development Candidates since 2021 (Includes Internal and External Compounds)
- 6 Clinical Trial Applications / Investigational New Drug Applications
- Timelines Accelerated from Idea to Development Candidate / First-in-Human by 25-50%
- Advanced First Biologics Development Candidates in 2023 (Peptide, Antibody and Gene Therapy)
- 1-2 Gene Therapy Programs On-Track to Enter First-in-Human Studies in 2025


2024 Portfolio Pipeline Snapshot

Ag = Agonist; VMAT2 = Vesicular Monoamine Transporter 2; LAI = Long-Acting Injectable' NR2B-NAM = N-Methyl-D-Aspartate Receptor Subtype 2B Negative Allosteric Modulator; MDD = Major Depressive Disorder; CIAS = Cognitive Impairment Associated with Schizophrenia; SCN8A-DEE = SCN8A Developmental and Epileptic Encephalopathy; CSWS = Epileptic Encephalopathy with Continuous Spike and Wave During Sleep; AI = Adrenal Insufficiency; ATS = Adjunctive Treatment of Schizophrenia; DCP = Dyskinetic Cerebral Palsy; CAH = Congenital Adrenal Hyperplasia; Peds = Pediatrics; HD = Huntington Disease

2024 Portfolio Pipeline Snapshot

"Must Win" Areas of Focus

VMAT2 Inhibitors Neuropsychiatry / Neurology	CRF-R1 Antagonist Neuroendocrinology (+)	Muscarinic Programs Neuropsychiatry / Neurology	Gene Therapy Neurology
NBI-890	Crinecerfont	NBI-568	GBA1
(Oral QD / Low Dose / LAI)	CRF R1 Follow-On	(M4 Agonist) NBI-567	Parkinson's Disease / Gaucher Disease
VMAT2	CRF	(M1-Preferring Agonist)	FXN
	ODE		Friedreich's Ataxia
VMAT2 (+)	CRF	NBI-569	5 Additional
(Dual Pharmacology)	CRF	(M4-Preferring Agonist) NBI-570 (M1/M4 Dual Agonist)	Pre-Clinical Programs
		NBI-986 (M4 Antagonist)	

Our R&D Strategy Is Delivering Results

 $\overrightarrow{}$ Top Talent Bench of Chemists and Biologists in Place

Z Developed Engineering Capabilities Across a Variety of Diversified Modalities

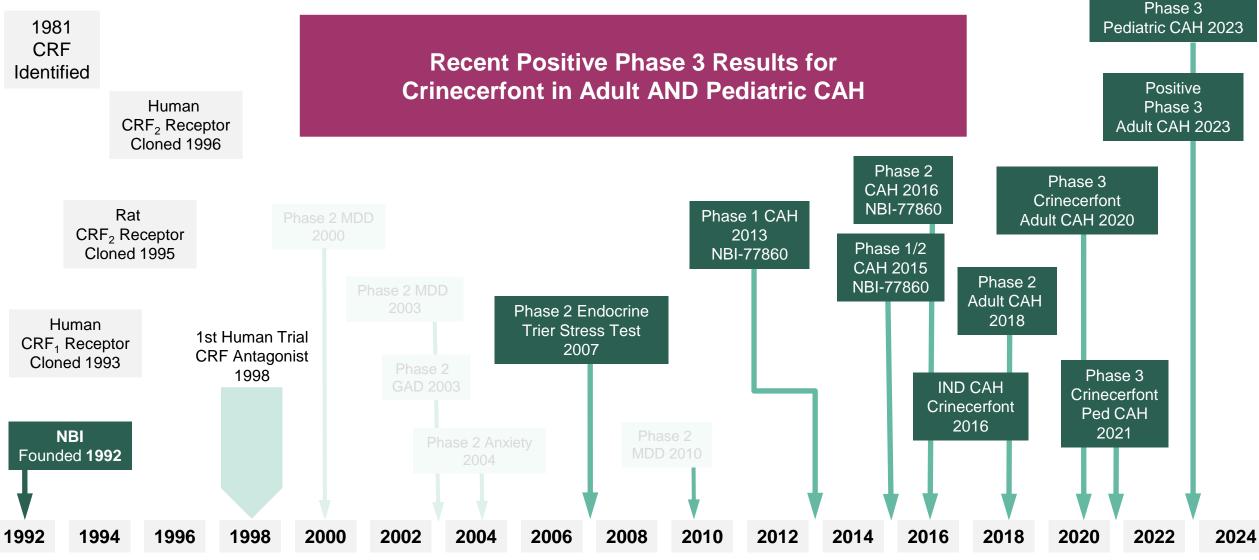
Focused on our Core Therapeutic Areas (TAs) of Interest

Advanced Early Portfolio is Now Diversified Across TAs and Modalities

Pre-clinical and Development Candidate Portfolio is Growing

Neurocrine Biosciences Is Uniquely Positioned to Advance Steady Flow of Innovative Clinical Candidates to Patients Across our Neuroscience-Focused Therapeutic Areas of Interest

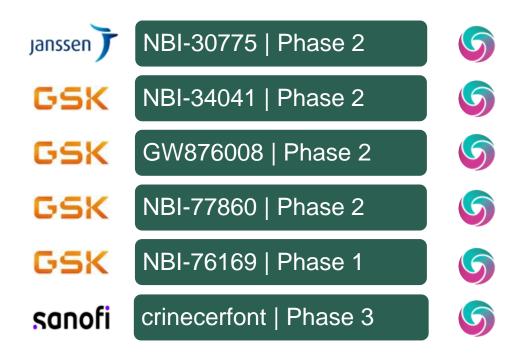
R&D Q&A Session



Dr. Dimitri Grigoriadis CHIEF RESEARCH OFFICER

Neurocrine Biosciences: Founded on a CRF Platform

30+ years of R&D on CRF1 Receptor Antagonists for Neuroendocrine Diseases


Positive

Neurocrine Biosciences: Our History with CRF

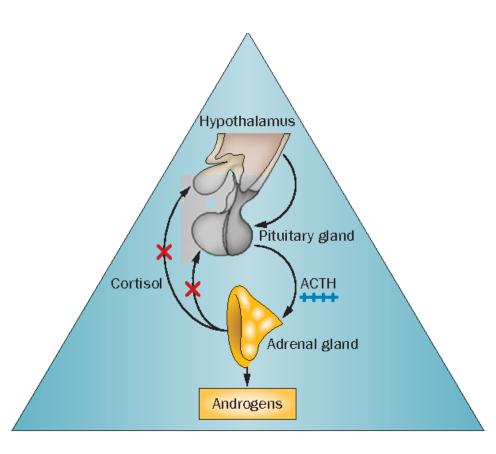
5

R&D Efforts Across the Spectrum of the CRF System GPCRs, Neuroendocrine Peptides and Binding Protein

CRF1 Receptor Antagonists

Industry-Wide Clinical Programs Discovered / Associated With Neurocrine went to Phase 2 or beyond

Dr. Eiry Roberts CHIEF MEDICAL OFFICER


Classic Congenital Adrenal Hyperplasia Due to 21-Hydroxylase Deficiency (210HD CAH)

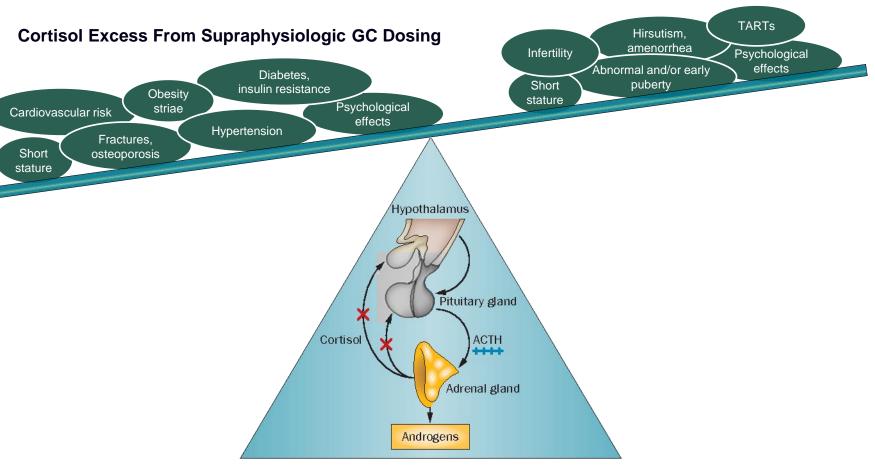
210HD CAH Results in:

- Impaired Synthesis of Cortisol and (Often) Aldosterone
- Excess Adrenal Androgen
 Production

Treatment Must Balance Consequences of:

- Supraphysiologic Glucocorticoid (GC) Doses
- High ACTH and Androgen
 Excess

Adapted from: Han TS et al. Nat Rev Endocrinol. 2014;10(2):115-24.


Classic Congenital Adrenal Hyperplasia Due to 21-Hydroxylase Deficiency (210HD CAH)

210HD CAH Results in:

- Impaired Synthesis of Cortisol and (Often) Aldosterone
- Excess Adrenal Androgen
 Production

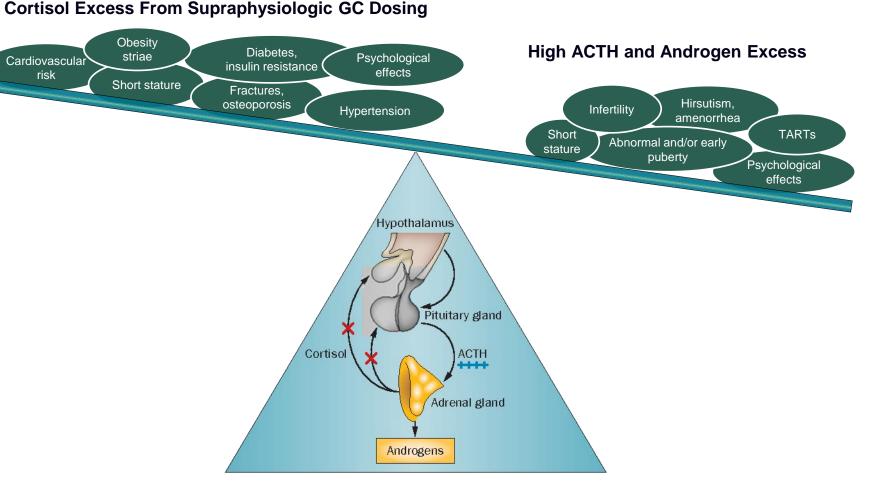
Treatment Must Balance Consequences of:

- Supraphysiologic Glucocorticoid (GC) Doses
- High ACTH and Androgen
 Excess

High ACTH and Androgen Excess

Adapted from: Han TS et al. Nat Rev Endocrinol. 2014;10(2):115-24.

Mallappa A and Merke DP. *Nat Rev Endocrinol.* 2022;43(1):91-159. ACTH, adrenocorticotropic hormone; GC, glucocorticoids; TARTs, testicular adrenal rest tumors.


Classic Congenital Adrenal Hyperplasia Due to 21-Hydroxylase Deficiency (210HD CAH)

210HD CAH Results in:

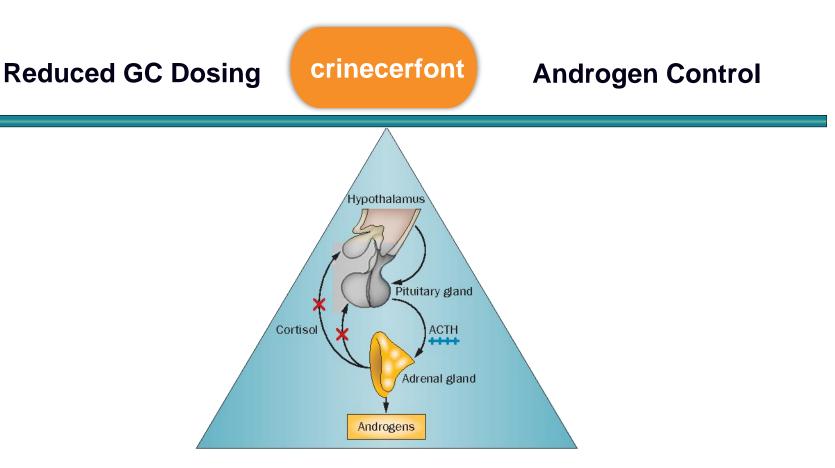
- Impaired Synthesis of Cortisol and (Often) Aldosterone
- Excess Adrenal Androgen
 Production

Treatment Must Balance Consequences of:

- Supraphysiologic Glucocorticoid (GC) Doses
- High ACTH and Androgen
 Excess

Adapted from: Han TS et al. Nat Rev Endocrinol. 2014;10(2):115-24.

Mallappa A and Merke DP. *Nat Rev Endocrinol.* 2022;43(1):91-159. ACTH, adrenocorticotropic hormone; GC, glucocorticoids; TARTs, testicular adrenal rest tumors.


Classic Congenital Adrenal Hyperplasia Due to 21-Hydroxylase Deficiency (210HD CAH)

210HD CAH Results in:

- Impaired Synthesis of Cortisol and (Often) Aldosterone
- Excess Adrenal Androgen
 Production

Treatment Must Balance Consequences of:

- Supraphysiologic Glucocorticoid (GC) Doses
- High ACTH and Androgen
 Excess

Adapted from: Han TS et al. Nat Rev Endocrinol. 2014;10(2):115-24.

Mallappa A and Merke DP. *Nat Rev Endocrinol.* 2022;43(1):91-159. ACTH, adrenocorticotropic hormone; GC, glucocorticoids; TARTs, testicular adrenal rest tumors.

CAH Panel Discussion MODERATED BY JEAN L. CHAN AND BOB FARBER

Congenital Adrenal Hyperplasia Panelists

Richard Auchus, M.D., Ph.D.

University of Michigan (Adult Endocrinologist, CAH Expert)

Kyriakie Sarafoglou, M.D.

University of Minnesota (Pediatric Endocrinologist, CAH Expert)

Lesley Holroyd

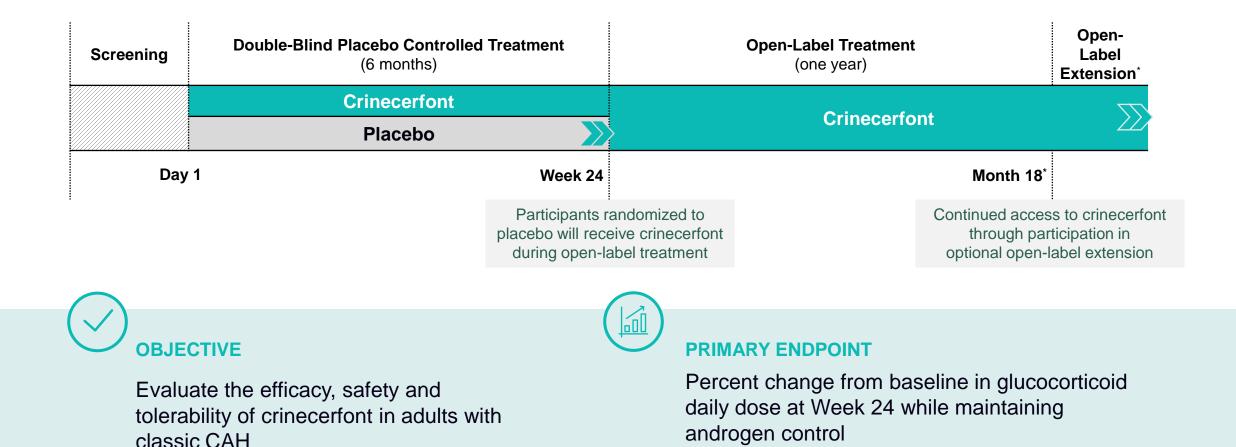
CAH Patient Advocate, CARES Foundation Board Member

Alexandra Dubois

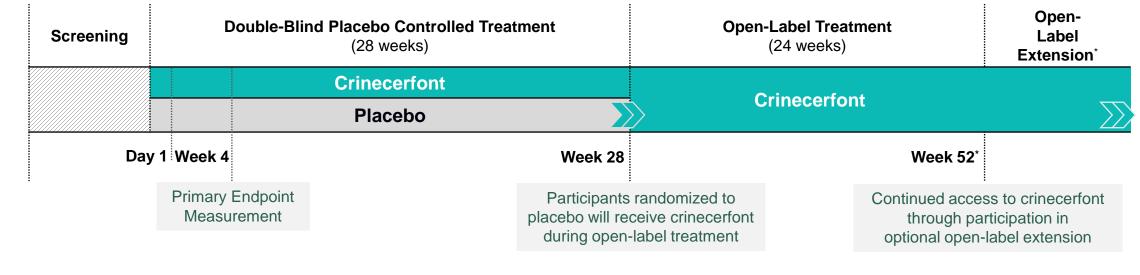
CAH Parent Caretaker Advocate, CARES Foundation Board Member

Dina Matos

Executive Director, CARES Foundation


Thank You for Being Here!

Crinecerfont Phase 3 Study Results (Adults & Pediatrics)


CAHtalyst[™] Adult Study Design

Crinecerfont is investigational and not approved in any country

CAHtalyst[™] Pediatric Study Design

OBJECTIVE

Evaluate the efficacy, safety and tolerability of crinecerfont in children and adolescents with classic CAH

Crinecerfont is investigational and not approved in any country

PRIMARY ENDPOINT

Change from baseline in serum androstenedione at Week 4

KEY SECONDARY ENDPOINT

Percent change in glucocorticoid daily dose from baseline at Week 28 while maintaining androgen control

CAHtalyst[™] Adult and Pediatric Study Design Comparisons

Similarities

Key Endpoints Focused on Androgen Reduction and Steroid Dose Reduction with Androgen Control

• Same definition of endpoints, same target dose

6-month Randomized Double-blind Placebo-Control

- First Month Steroid Stable Evaluate Androgens
- Next ~5 Months Active Steroid Reduction

Crinecerfont Dosing (BID, oral)

Clinical Assessments of Steroid and Androgen Impact

Differences

Ordering of Endpoints (Primary vs. Key Secondary)

Management of Steroid Reduction

- Adult Study: "Optimize on Lowest Steroid Dose"
 - "Forced" Down Titration Followed by Optimization
- Pediatric Study: "Optimize on Androgen Control"
 - Decrease Steroid Dose ONLY If Androgen Controlled

CAHtalyst[™] Adult and Pediatric Study Baseline Characteristics

Study Characteristic	Adult Study (N = 182)	Pediatric Study (N = 103)	Key Takeaways
Male / Female (Proportion of Total Subjects)	51% Male 49% Female	52% Male 48% Female	Nearly Equal Male and Female
Average Age (Age Ranges)	31 Years Old (18 – 58 Years Old)	12 Years Old (4 – 17 Years Old)	Broad Age Range Representation
Average Baseline Glucocorticoid (GC) Dose*	32 mg/day (18 mg/m²/day)	16 mg/m²/day	Baseline GC Dose ~2x "Physiologic" (Replacement)
Average Baseline Androstenedione Level**	620 ng/dL	431 ng/dL	Poor Androgen Control (~2-3x upper end of normal) <u>Despite</u> High GC Dose
Body Mass Index (BMI)	47% Obese (BMI ≥ 30 kg/m²)	58% ≥ 85 th Percentile (Overweight or obese)	Highlights Metabolic Impact of Steroids, Especially Overweight at Early Age
Percent of Subjects Completing Study 24-Week (Adult) or 28-Week (Pediatric) Placebo-Controlled Treatment Period	>95%	>95%	Vast Majority Completed Placebo- controlled Period and Continuing Treatment Reflecting Trial Quality, Crinecerfont Tolerability, Unmet Need

CAHtalyst[™] Adult and Pediatric Study Androgen Reduction

	Percent Change* in Androstenedione at Week 4 (Following Glucocorticoid Stable Period)			
Study Characteristic	Adult Study (N = 182)	Pediatric Study (N = 103)	Key Takeaways	
Patients Receiving Crinecerfont	-45%	-54%	Substantial and Meaningful Reduction in Androgens with Crinecerfont by 4 Weeks	
Patients Receiving Placebo	+21%	+33%	Increase in Androgens on Placebo Reflecting Poor Disease Control Despite High Dose Steroids	
Placebo-Adjusted Difference (Patients Receiving Crinecerfont – Patients Receiving Placebo)	-66%	-86%	Similar to Androgen Reduction Observed in Phase 2 Open-Label Studies (14 days)	
P-value	<0.0001	<0.0001		

CAHtalyst[™] Adult and Pediatric Study Glucocorticoid Dose Reduction While Maintaining Androgen Control

	Percent of Subjects Achieving a Glucocorticoid Daily Dose ≤ 11 mg/m²/day While Maintaining Androgen Control			
CAHtalyst [™] Trial Participants	Adult Study @ Week 24	Pediatric Study @ Week 28	Key Takeaways	
Patients Receiving Crinecerfont	63%	30%	Substantial Percentage of Patients on Crinecerfont Achieved Physiologic GC Dose with Androgen Control	
Patients Receiving Placebo	18%	0%	No Pediatric Patients on Placebo Achieved Physiologic GC Dose Reflecting Inadequacy of GC to Treat High Androgen	
Placebo-Adjusted Difference (Patients Receiving Crinecerfont – Patients Receiving Placebo)	45%	30%	Similar Results in Adult and Pediatric Patients Considering Differences at Baseline and in Trials	
P-value	<0.0001	0.0009*		

In Addition, Treatment with Crinecerfont in Adult and Pediatric Patients Resulted in Significant Percent Reduction in Glucocorticoid Dose while Maintaining Androgen Control (p<0.0001 both studies)

CAHtalyst[™] Adult and Pediatric Study Safety and Tolerability

- Crinecerfont Treatment was Generally Well-Tolerated with Few Serious Adverse Events (SAEs), None Were Assessed as Related to Crinecerfont
- Most Common Adverse Events During the Double-Blind, Placebo-Controlled Period of the Adult Study were Fatigue, Headache, and Coronavirus Infection
- Most Common Adverse Events During the Double-Blind, Placebo-Controlled Period of the Pediatric Study were Headache, Fever, Vomiting, Upper Respiratory Tract Infection, and Nasopharyngitis
- No Safety Concerns Related to Adrenal Crisis

CAH/CRINECERFONT Q&A SESSION

Dr. Kevin Gorman CHIEF EXECUTIVE OFFICER

Key Milestones in 2024 and Longer Term

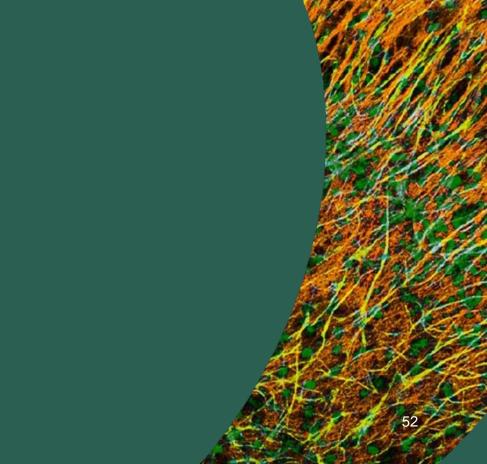
2024

- April PDUFA for Valbenazine Oral Granules Sprinkle Formulation
- Submitting New Drug Application for Crinecerfont in Adult and Pediatric CAH Indications
- Advancing Five Phase 1 Programs including Four Muscarinic Compounds and next generation VMAT2 Inhibitor
- Anticipating Top-Line Data for Five Phase 2 Programs
 - Efmody for Adrenal Insufficiency and CAH in 1H
 - NBI-'845 (AMPA Potentiator) for Inadequate Response to Treatment in Major Depressive Disorder in 1H
 - NBI-'568 (M4 Agonist) for Schizophrenia in 2H
 - Luvadaxistat (DAAO Inhibitor) for Cognitive Impairment Associated with Schizophrenia in 2H
- Developing Sustainable R&D Engine

Longer Term

- Anticipated Crinecerfont Approved in U.S. (2025) and in Europe (2026)
- Advancement of 2 Gene Therapy Programs Into Clinical Development (2025)
- Advancement of 20 Development Candidates (Through 2027)
- Sustainable R&D Engine Generating 1-2 Mid-to-Late-Stage Clinical Read-Outs Every Year
- Clinical Pipeline
 - Weighted Towards Neurology vs. 2023
 - Balanced Between Biologics and Small Molecules
 - Focused on Clinically and / or Genetically Validated Targets
 - Majority of Candidates Considered "Next" or "Best-In-Class"
- INGREZZA[®] (valbenazine) Market Exclusivity Into 2038

Building a Leading Neuroscience-Focused Company



OPEN Q&A SESSION

THANK YOU!

Neurocrine Biosciences 2023 Analyst Day

December 5, 2023